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Abstract

In the present work, a numerical study of the effect of a hot wavy wall of a laminar natural convection in an inclined

square cavity, differentially heated, was carried out. This problem is solved by using the partial differential equations,

which are the vorticity transport, heat transfer and stream function in curvilinear co-ordinates. The tests were per-

formed for different inclination angles, amplitudes and Rayleigh numbers while the Prandtl number was kept constant.

Two geometrical configurations were used namely one and three undulations.

The results obtained show that the hot wall undulation affects the flow and the heat transfer rate in the cavity. The

mean Nusselt number decreases comparing with the square cavity. The trend of the local heat transfer is wavy. The

frequency of the latter is different from the undulated wall frequency. � 2002 Published by Elsevier Science Ltd.

1. Introduction

The study of the natural convection in the cavities

has been the focus on a lot of investigations during the

last three decades because of the multiple applications in

which it is involved. Many experimental and numerical

studies have emphasised on the natural convection in the

cavity. Since the work of Ostrach [1], Catton [2] and

Yang [3] which have shown the importance of the in-

clined cavity, a more comprehension of the flow beha-

viour and the heat transfer in such cavities were needed.

The study of the extreme cases such as the Benard

problem and the cavity with the heated vertical walls,

has shown the influence of the inclination angle on the

flow characteristics [4]. Then, the different regimes of the

flow have been studied for the inclined cavities as de-

scribed in the work of Hollands and Konicek [5] and

Hollands [6] in terms of the critical Rayleigh number

related to the stability of the confined flow. The study of

the aspect ratio and inclination angle influence has al-

lowed the understanding of the Nusselt number evolu-

tion [7] and the finding of some correlation for the

Nusselt number calculation [8,9].

The use of different boundary conditions has shown

that the flow and the heat transfer are seriously affected

[10–13]. This was also the case when the variable prop-

erties such as the thermal conductivity, the viscosity and

the heat capacity are varied [14].

During the last few years, some interesting results on

the natural convection for both laminar and turbulent

flow in an inclined square cavity have been found by the

authors in [15–17]. An extension work on the natural

convection in inclined cavities has been performed. In

[18,19], the influence of partitions in the geometry and

changes in the geometry has been investigated.

On the other hand, Yao [20] has studied theoretically

the natural convection along a vertical wavy surface. He

found the heat transfer rate for a wavy surface was

constantly smaller than that of corresponding flat plate.

The influence of the geometrical parameters on the mean

Nusselt number is clearly shown from his results. Add-

ing to the latter, the amplitude, the wavelength and

mainly the wave number should be taken into account.

From the latter findings and for the geometry changes in

the cavity, Adjlout et al. [21] have studied the influence

of the undulation number in a rectangular cavity dif-

ferentially heated with a vertical undulated hot wall on

the heat transfer rate.

In the present paper, a numerical study of the in-

fluence of the wavy hot wall in an inclined square
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cavity on a laminar natural convection has been per-

formed. A sinusoidal wall is chosen for the hot wall

and different amplitudes of undulation were investi-

gated. One and three undulations are presented in the

present work. The fluid used is air. The present study

will focus on the influence of the inclination angle on

the local Nusselt number distribution for various

Rayleigh numbers. Furthermore, stream line and iso-

therm study of the hydrodynamic and thermal

boundary layers has been performed providing more

details of the flow and the heat transfer near the wavy

wall.

2. Analysis

The problem treated is a two-dimensional heat

transfer in an inclined square cavity. The hot wall is

wavy with a constant temperature Th. The cold wall is

opposite to the latter with a constant temperature Tc
while the other sides are insulated. The Rayleigh number

is varied up to 106 while Prandtl number is fixed to be

0.71. Fig. 1 shows the geometrical features of the cavity

used.

The viscous incompressible flow inside a closed cavity

and a temperature distribution is described by the Na-

vier–Stokes and the energy equations. The Boussinesq

approximation is used with the assumptions of constant

properties and negligible viscous dissipation. The gov-

erning equations are defined as follows:
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With the following boundary conditions

T ¼ Th; u ¼ v ¼ 0 on the hot wall;

T ¼ Tc; u ¼ v ¼ 0 on the cold wall;

oT
on

¼ 0; u ¼ v ¼ 0 on the rest:

ð4Þ

Hence, introducing the following non-dimensioned

variables:

ðx; yÞ� ¼ ðx; yÞ=l;

ðu; vÞ� ¼ ðu; vÞl=a;

h ¼ ðT � T0Þ=ðTh � TcÞ with T0 ¼ ðTh þ TcÞ=2:

Pr ¼ m=a;

Ra ¼ bgl3ðTh � TcÞ=ðamÞ: ð5Þ

The equations of the problem are now expressed as

follows:

Nomenclature

a thermal diffusivity

g gravitational acceleration

J Jacobian of the transformation

Lf F ¼ ½ðf gF Þn � ðf nF Þg�=J
operator

Nul ¼ ðyg cos s � xg sin sÞðdh=dnÞð1=JÞ
Nu Nusselt number

Pr ¼ m=a Prandtl number

Ra ¼ bgl3ðTh � TcÞ=ðamÞ
Rayleigh number

S curvilinear coordinate on the

wavy wall

T temperature

u; v velocity components on x and y

U velocity vector

x; y Cartesian co-ordinates

Y ordinate

Greek symbols

b thermal dilatation coefficient

b ¼ xnxg þ ynyg transformation factor

a ¼ xgxg þ ygyg

c ¼ xnxn þ ynyn
n; g co-ordinates of the

transformed domain

m kinematic viscosity

q density

/ inclination angle

w stream function

x vorticity

s angle between the normal to

the wall and x-axis

o=on gradient normal

r operator nabla

r2 operator Laplaceerr2 ¼ ½aonn � 2=bong þ cogg þ J 2ðPog þ QonÞ�=J 2

Indices

x; y; n; g; t derivative relative to x; y; n; g
and t

h,c hot wall and cold wall

2142 L. Adjlout et al. / International Journal of Heat and Mass Transfer 45 (2002) 2141–2152



o2w
ox2

þ o2w
oy2

¼ �x; ð6Þ

ox
ot

þ u
ox
ox

þ v
ox
oy

¼ Pr
o2x
ox2

�
þ o2x

oy2

�

þ PrRa sin/
oh
oy

�
þ cos/

oh
ox

�
; ð7Þ

oh
ot

þ u
oh
ox

þ v
oh
oy

¼ a
o2h
ox2

�
þ o2h

oy2

�
: ð8Þ

The study is completed with the definition of the fol-

lowing boundary conditions:

h ¼ �0:5; u ¼ v ¼ 0 on the cold wall;

h ¼ 0:5; u ¼ v ¼ 0 on the hot wall;

hn ¼ 0; u ¼ v ¼ 0 on the rest:

ð9Þ

3. Numerical procedure

The grid generation calculation is based on the

curvilinear co-ordinate system applied to fluid flow as

described by Thompson et al. [22]. The transformation is

as follows:

n ¼ nðx; yÞ; g ¼ gðx; yÞ
for 06 n6 1; 06 g6 1:

ð10Þ

Knowing that

06 y6 1

and

06 x6 f ðyÞ

with

f ðyÞ ¼ ½1�AmpþAmpðcos 2pnyÞ�;
g ¼ y; x ¼ xðn; gÞ;

ð11Þ

where n and Amp are, respectively, a number of undu-

lation and amplitude.

The problem is now defined in terms of new vari-

ables:

Lwx ¼ Pr err2x þ RaPr cos/Lyhð � sin/LxhÞ; ð12Þ

err2w ¼ �x; ð13Þ

Fig. 1. Geometrical feautures of the used cavity: (a) one undulation; (b) three undulations; (c) inclined cavity.
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Lwh ¼ err2h; ð14Þ

where the operators Lwx; Lxh; Lyh and err2 are defined in

the nomenclature, and the following boundary condi-

tions are:

n ¼ 0; w ¼ 0; h ¼ �0:5; x ¼ � a
J 2

wnn;

n ¼ 1; w ¼ 0; h ¼ 0:5; x ¼ � a
J 2

wnn;

g ¼ 0; w ¼ 0; hg ¼ 0; x ¼ � c
J 2

wgg;

g ¼ 1; w ¼ 0; hg ¼ 0; x ¼ � c
J 2

wgg; ð15Þ

The boundary conditions for the vorticity are obtained

from Eq. (15) and the stream function value on the

walls.

The heat transfer rate by convection in an enclosure

is obtained from the Nusselt number calculation. On the

wavy wall, the local Nusselt number is expressed as:

Nul ¼ ðyg cos s � xg sin sÞdh
dn

1

J
: ð16Þ

While the mean Nusselt number is the average of the

local Nusselt number along the wavy wall and is defined

by the following equation:

Nua ¼
1

s

Z s

0

ðyg cos s

�
� xg sin sÞdh

dn
1

J

�
ds: ð17Þ

The governing equations are discretised by a finite

difference method. The resolution of the equation sys-

tem is performed by an implicit method with an al-

ternate difference implicit (ADI) scheme. This scheme

leads to the tridiagonal matrix obtained from a semi-

iterative line by line procedure. The simplified Gauss

elimination method is used to solve this system. The

marching step is used for the vorticity resolution. The

non-linearity and strong coupling of the equations

needs an under relaxation to ensure convergence. The

relaxation factors are used for stream function, vor-

ticity and temperature equations and are, respectively,

1.0, 0.2 and 0.5.

Different grids were used namely ð31
 31Þ; ð42
 42Þ
and ð50
 50Þ. The calculations were performed on

Pentium II, 128 Mo RAM. Typical run to reach steady

state for ð42
 42Þ grid takes about 3 min CPU time.

4. Results

Several grids have been tested for the case of

Ra ¼ 105, / ¼ 90� and the amplitude of 0.05. Table 1

shows the average Nusselt number for the three grids

used, at Ra ¼ 105;/ ¼ 90� and the amplitude of undu-

lation 0.05.

It is clearly seen that there is a little difference be-

tween the three grid results and the grid of ð42
 42Þ is
used in all subsequent calculations.

The discussion of the following results concerns the

temperature and streamline distributions, the heat

transfer rate and the local Nusselt number for the un-

dulated cavities at different inclination angles (0�, 30�,
60�, 90�, 120�, 150�, and 180�). The results were for

Rayleigh of 105 and the undulation amplitude of 0.05. In

Figs. 2–5 the direction of the gravity is indicated by the

arrows.

4.1. Cavity with one undulation, Ra ¼ 105

The angular position / ¼ 0� corresponds to the

Benard problem, where it is clearly seen the presence

of two counter-rotating rolls disposed on both sides of

the symmetrical axis of the cavity, even with the low

fluid motion as shown in Fig. 2(a). In the median part,

the fluid hits the undulation crest resulting in a heat

transfer increase in this region. The latter is confirmed

with the isotherm distribution near the hot wall as

shown in Fig. 3(a). These isotherm lines pass near the

crest then move away from the wall trough. It is

shown in the same figure that in the remaining part of

the cavity the heat transfer is purely conductive. The

local Nusselt number distribution on the hot wall

shows a slight increase of this number near the crest,

which vanishes when approaching the wall trough

(Fig. 6).

When the angle / is increased to 30�, the gravitation
component perpendicular to the adiabatic walls is pre-

sent. A fluid motion is starting along the wall cavity

resulting in a change of position of the two cells parallel

to the symmetrical axis as shown in Fig. 2(b). The

thermoconvective movement causes an isotherm line

deviation (Fig. 3(b)). In the central part of the cavity, the

isotherms stay perpendicular to the gravitation. In the

neighbourhood of the hot wall, the thermal boundary

layer thickness increases in the flow direction. This re-

mark is confirmed with the local Nusselt number dis-

tribution shown in Fig. 6. However, the heat transfer by

diffusion remains dominant.

At the angle of / ¼ 60�, there is a shrink of the two

rolls in the perpendicular direction to the symmetrical

axis of the cavity as shown in Fig. 2(c). The flow is ac-

celerated just after the bottom corner of the hot wall and

near the top corner of the normal wall. This gives a big

Table 1

Comparison on Nusselt number at several grids for

Ra ¼ 105;/ ¼ 90� and the amplitude 0.05

31
 31 42
 42 50
 50

One undulation 3.65 3.68 3.71

Three undulations 3.52 3.51 3.53

2144 L. Adjlout et al. / International Journal of Heat and Mass Transfer 45 (2002) 2141–2152



increase of the heat transfer caused by the fact that the

fluid in these regions hits, respectively, the hot and cold

walls. The local Nusselt number, as shown in Fig. 6, is

indeed high in these zones. The isotherm lines in the

central region of the cavity stay perpendicular to the

gravitation giving a stratification situation of the fluid in

this zone (Fig. 3(c)). The thermal boundary layer is

growing along the isotherm walls. However, near the

crest, the isotherm lines stay quasi-parallel to the wall.

This situation is also observed for the streamlines near

the crest. The effect caused by the latter is explained by

the presence of an almost horizontal inflection near the

crest in the local Nusselt number distribution as shown

in Fig. 6.

Fig. 2. Streamline distributions for different angles and Rayleigh of 105: (a) streamline distribution for angle 0�; (b) streamline dis-

tribution for angle 30�; (c) streamline distribution for angle 60�; (d) streamline distribution for angle 90�; (e) streamline distribution for

angle 120�; (f) streamline distribution for angle 150�; (g) streamline distribution for angle 180�.

L. Adjlout et al. / International Journal of Heat and Mass Transfer 45 (2002) 2141–2152 2145



At the angle of / ¼ 90�, the gravitation is perpen-

dicular to the adiabatic walls. Fig. 2(d) shows the ther-

moconvective flow accelerating more and is represented

by the form of one diagonally stretched cell. Near the

crest, the streamlines move near the wall just after the

crest. The isotherm distribution shows the same feature

near the latter region as presented by Fig. 3(d). This

observation proves the diminution of the thermal

Fig. 3. Temperature distributions for different angles and Rayleigh of 105: (a) temperature distribution for angle 0�; (b) temperature

distribution for angle 30�; (c) temperature distribution for angle 60�; (d) temperature distribution for angle 90�; (e) temperature dis-

tribution for angle 120�; (f) temperature distribution for angle 150�; (g) temperature distribution for angle 180�.
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boundary layer thickness just after the crest. The local

Nusselt number distribution confirms this finding while

the latter variation is the inverted of the thermal

boundary layer thickness as seen in Fig. 6. The flow

stays stratified in the core region of the cavity.

At the angle of / ¼ 120� and / ¼ 150�, the flow is

monocellular as shown in Figs. 2(e) and (f). The tem-

perature distributions are shown in Figs. 3(e) and (f).

Near and along the hot wall, the boundary layer thick-

ness increases then decreases under the effect of the

Fig. 4. Streamline distributions for different angles and Rayleigh of 105: (a) streamline distribution for angle 0�; (b) streamline dis-

tribution for angle 30�; (c) streamline distribution for angle 60�; (d) streamline distribution for angle 90�; (e) streamline distribution for

angle 120�; (f) streamline distribution for angle 150�; (g) streamline distribution for angle 180�.
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undulation. Consequently, the local Nusselt number

decreases in the crest zone and increases before it as

observed in Fig. 6. The isotherm lines near the isotherm

walls are more dense for the case of / ¼ 120� than for

/ ¼ 150�. This shows that the heat transfer diminishes

for / greater than 120�.

Fig. 5. Temperature distributions for different angles and Rayleigh of 105: (a) temperature distribution for angle 0�; (b) temperature

distribution for angle 30�; (c) temperature distribution for angle 60�; (d) temperature distribution for angle 90�; (e) temperature dis-

tribution for angle 120�; (f) temperature distribution for angle 150�; (g) temperature distribution for angle 180�.
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The calculations for / ¼ 180� have converged prov-

ing that the undulated cavity delays more the limits of

the tridimensional flow which is present in the case.

Fig. 2(g) shows that the flow stays under the

form of one quasi-circular cell. The trend of the

isotherm lines is not different from the above one

as shown in Fig. 3(g). The heat transfer decreases

more near the isotherm walls. The trend of the local

Nusselt number distribution makes in evidence the

persistence of the undulation influence as presented in

Fig. 6.

4.2. Cavity with three undulation, Ra ¼ 105

The streamline distributions inside the cavity

with three undulations for the respective angle

/ ¼ 0�, 30�, 60�, 90�, 120�, 150� and 180� are presented

in Fig. 4.

At / ¼ 0�, six Benard rolls appear in the cavity.

However, their movement is so low that the heat

transfer mode is purely conductive as shown in Figs.

5(a) and 7.

Apart from the cases of / ¼ 30� and / ¼ 180�, the
flow in the cavity is monocellular as exhibited in Figs.

4(c)–(f). It is clear that the undulated wall has an in-

fluence on the geometrical form taken by the cell as it is

noticed on the different streamline patterns. In particu-

lar, near the hot wall, the streamlines converge toward

the wall after each crest and diverge after each trough.

This behaviour has a repercussion on the heat transfer

by convection near the wall. Indeed, when the normal

velocity component approaches the streamline to the

wall, the heat transfer increases. The examination of the

isotherm lines and the local Nusselt number distribution

as described by Figs. 5(b)–(f) and Fig. 7 reveals that the

thermal boundary layer thickness on the side of the

undulated wall increases and decreases just before a

crest or just after a trough. The local Nusselt number

peaks move forward with an increase of the inclination

angle.

For the case of / ¼ 180�, near the cell dominating

the major part of the cavity surface, appears a corner cell

in the opposite direction of the main one and hence

decreases the heat transfer by convection (Figs. 4(g), 5(g)

and 7). The local Nusselt number peaks have moved

clearly comparing with the precedent cases. This is

probably due to the important rotation velocity in the

present case.

It is clearly seen, after examination of Figs. 6 and 7,

that the heat transfer is maximum for the configuration

of / ¼ 90�.

4.3. Local Nusselt number comparison

Fig. 8 represents a comparison between the local

Nusselt number distributions for one and three undu-

lations with the results of the square cavities from

[23,24] for an angle of / ¼ 90�. The undulated feature

of the local Nusselt is well established for the wavy wall

cavity as observed in the latter figure. The undulation

frequency of Nusselt distribution is slightly different

from the undulated wall frequency. Indeed, for the

configuration with one undulation, the frequency is

higher than the wall frequency, while it is lower than for

the configuration with three undulations. It has to be

. . . . . .

Fig. 7. Local Nusselt number for three undulation and for

Ra ¼ 105.

.. . . . .

Fig. 8. Comparison of local Nusselt number results for

/ ¼ 90�.

Fig. 6. Local Nusselt number distributions for one undulation

and for Ra ¼ 105.
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noted that Yao [20] has found for the vertical wavy

plate a frequency twice that of the wall. The mean

variation of these distributions follows the same trend as

for the square cavity but the difference between them is

notable.

4.4. Averaged Nusselt number

The comparison of the averaged Nusselt number

function of Rayleigh number between the undulated

cavities and the squares cavities [14,24] for an angle of

/ ¼ 90� is presented in Fig. 9. This comparison is for a

Rayleigh number up to 106. The influence of the wall

undulations is clearly seen in the latter figure by a clear

decrease in Nusselt number comparing with the square

cavities. The difference between the averaged Nusselt

number of [14] and the cavity with three undulations

increases with an increase in the Rayleigh number. On

the other hand, the configuration with one undulation

has a mean Nusselt number higher than the configura-

tion with three undulations.

Fig. 10 shows the averaged Nusselt number against

the inclination angle for a Rayleigh number of 105. For

the square cavity, the curve presented here, is obtained

by the formulae of [14] and is expressed as follows:

Nua¼ðNuað90�Þ�Nuað0�ÞÞ
ð2=pÞ
ð/sinð/ÞÞþNuað0�Þ
for/6150�;
Nua¼Nuað180�Þ
ðcosð/�180�ÞÞ for/>150�:

ð18Þ

The averaged Nusselt number remains low for the un-

dulated cavities in the range 0–180� exception for the

neighbourhood of the inclination angle of 150� where

the configuration with one undulation manifests an av-

eraged Nusselt number very slightly higher than the one

for the square cavity. This figure also shows that the

minimum of the averaged Nusselt number is obtained

for an angle of / ¼ 180� which is in agreement with the

results of Ozoe et al. [13].

The three undulated configuration has an averaged

Nusselt number slightly higher than the cavity with one

undulation up to 75�, over this value, the opposite oc-

curs and the difference increases with an increase in the

inclination angle.

4.5. Influence of the amplitude of the undulation

The distributions of local Nusselt number for differ-

ent amplitudes for three undulations at Ra ¼ 105 are

shown in Fig. 11. The same trend is observed for the

four tested amplitudes. There is a decrease of the local

Nusselt number on the whole wall with an increase in

the amplitude of the undulation.

The comparison on the mean Nusselt number for

different amplitudes of undulation was performed for

the case of one and three undulations and it is shown in

Table 2.

It is noted that the mean Nusselt number decreases

with an increase in the amplitude of the undulation. This

result has also been found by Yao [20]. The undulated

wall leads to an increase of the heat exchange area as

Fig. 9. Comparison of the mean Nusselt number results for

/ ¼ 90�.

Fig. 10. Comparison of the mean Nusselt number at Ra ¼ 105.

. . . . ..

Fig. 11. Local Nusselt number for three undulation and for

Ra ¼ 105.
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shown in Table 2. However, for the case of one undu-

lation, the relative decrease of the mean Nusselt number

(11.3%, 13.5%, 17.5% and 18.5%) comparing with a

square cavity [24] is higher than the increase in the area

of the undulated wall, respectively (2%, 3%, 5% and 6%).

On the other hand, for the case of three undulations, the

increase of the heat exchange area (18%, 25%, 37% and

41%) is slightly higher than the average Nusselt number,

respectively (15.4%, 21.5%, 30.6% and 32.5%). In both

cases, a heat transfer by convection slightly decreases.

Furthermore, in a solar collectors for example, the ex-

change by radiation increases with the increase of the

exchange area.

5. Conclusion

The present work deals with the effect of the undu-

lated hot wall on the heat transfer by natural convection

in an inclined square cavity, heated differentially. The

study is performed numerically for a laminar free con-

vection. The results obtained for different inclination

angles and for different Rayleigh numbers show that the

flow and the heat transfer are affected by the undulation

of the hot wall. Indeed, the latter acts on the thermal

boundary layer that thickened or thinned along this

wall. Consequently, an undulated feature is given to the

local Nusselt number distribution resulting in a decrease

of the heat transfer rate comparing with the square

cavity. It seems also that an increase in the undulation

number on the hot wall reduces the heat transfer rate for

an inclination angle greater than 75�.

Acknowledgements

The authors wish to give special thanks for Prof. A

Mir of Ecole Superieure de Technologie d’Agadir, Prof.

Jamoule and Dhang of Mechanical Department of Liege

University.

References

[1] S. Ostrach, Natural convection in enclosures, in: J.P.

Hartnett, T.F. Irvine Jr. (Eds.), Advances in Heat Transfer,

vol. 8, Academic Press, New York, 1972, pp. 161–227.

[2] I. Catton, Natural convection in enclosures, in: Proceed-

ings of the Sixth International Heat Transfer Conference,

vol. 6, 1978, pp. 13–31.

[3] K.T. Yang, Transitions and bifurcations in laminar buoy-

ant flows in confined enclosures, J. Heat Transfer 110

(1988) 1191–1204.

[4] J.E. Hart, Stability of the flow in a differentially heated

inclined box, J. Fluid Mech. 47 (1991) 547–576.

[5] K.G.T. Hollands, L. Konicek, Experimental study of the

stability of differentially heated inclined air layers, Int. J.

Heat Mass Transfer 16 (1973) 1467–1476.

[6] K.G.T. Hollands, Natural convection in horizontal thin-

walled honeycomb panels, J. Heat Transfer 95 (1973) 439–

444.

[7] J.N. Arnold, I. Catton, D.K. Edwards, Experimental

investigation of natural convection in inclined rectangular

regions of differing aspect ratios, J. Heat Transfer 98 (1976)

67–71.

[8] S.M. Elshirbiny, G.D. Raithby, K.G.T. Hollands, Heat

transfer by natural convection across vertical and inclined

air layers, J. Heat Transfer 104 (1982) 96–102.

[9] S.M. Elshirbiny, K.G.T. Hollands, G.D. Raithby, Nusselt

number distribution in vertical and inclined air layers,

J. Heat Transfer 105 (1983) 406–408.

[10] H. Ozoe, H. Sayama, S.W. Churchill, Natural convection

in an inclined rectangular channel at various aspect ratios

and angles-experimental measurements, Int. J. Heat Mass

Transfer 18 (1975) 1425–1431.

[11] H. Ozoe, H. Sayama, S.W. Churchill, Natural convection

in an inclined square channel, Int. J. Heat Mass Transfer

17 (1974) 401–406.

[12] H. Ozoe, K. Yamamoto, H. Sayama, S.W. Churchill,

Natural circulation in an inclined rectangular channel

heated on one side and cooled in opposing side, Int. J. Heat

Mass Transfer 17 (1974) 1209–1217.

[13] H. Ozoe, K. Fujii, N. Lior, S.W. Churchill, Long rolls

generated by natural convection in an inclined rectangular

enclosure, Int. J. Heat Mass Transfer 26 (1983) 1427–1438.

[14] Z.Y. Zhong, K.T. Yang, J.R. Lloyd, Variable property

natural convection in titled cavities with thermal radiation,

in: R.W. Lewis, V.T.Morgan (Eds.), Numerical Methods in

Heat Transfer, vol. 3, Wiley, Chichester, 1985, pp. 195–214.

[15] R.A. Kuyper, T.H.H. Van Der Meer, C.J. Hoogendoorn,

R.A.W.M. Henkes, Numerical study of laminar and

turbulent natural convection in an inclined square cavity,

Int. J. Heat Mass Transfer 36 (11) (1993) 2899–2911.

[16] R.A.W.M. Henkes, C.J. Hoogendoorn, Scaling of the

laminar natural convection flow in an heated square cavity,

Int. J. Heat Mass Transfer 36 (11) (1993) 2913–2925.

[17] J.A. Janssen, R.A.W.M. Henkes, C.J. Hoogendoorn,

Transition to time-periodicity of a natural convection flow

Table 2

Mean Nusselt number and length of undulation at Ra ¼ 105 for different amplitudes

Amplitude 0.05 0.06 0.075 0.08

Nua for one undulation 3.68 3.57 3.43 3.38

Nua for three undulations 3.51 3.24 2.89 2.80

Length of one undulation 1.02 1.03 1.05 1.06

Length of three undulations 1.18 1.25 1.37 1.41

L. Adjlout et al. / International Journal of Heat and Mass Transfer 45 (2002) 2141–2152 2151



in a 3D differentially heated cavity, Int. J. Heat Mass

Transfer 36 (11) (1993) 2927–2940.

[18] Y.E. Karyakin, Transient natural convection in prismatic

enclosures of arbitrary cross-section, Int. J. Mass Transfer

32 (1989) 1095–1103.

[19] T.S. Lee, Numerical experiment with fluid convection in

titled nonrectangular enclosures, Numer. Heat transfer 19

(1991) 487–499.

[20] L.S. Yao, Natural convection along a vertical wavy

surface, J. Heat Transfer 105 (1983) 465–468.

[21] L. Adjlout, O. Imine, A. Azzi, M. Belkadi, Numerical

study of the natural convection in a cavity with

undulated wall, in: Third International Thermal Energy

and Environment Congress, Merrakech, Maroc, June 9–

12, 1997.

[22] P.D. Thompson, F.C. Thames, F. Mastin, Automatic

numerical generation of body-fitted curvilinear co-ordinate

system, J. Comput. Phys. 15 (1974) 299–319.

[23] I. Catton, P.S. Ayyasme, R.M. Clever, Natural convection

flow in a finite rectangular slot arbitrary oriented with

respect to the gravity vector, Int. J. Heat Mass Transfer 17

(1974) 173–184.

[24] F.J. Hammady, J.R. Lloyd, H.Q. Yang, K.T. Yang, Study

of local natural convection heat transfer in an inclined

enclosure, Int. J. Heat Mass Transfer 32 (9) (1989) 1697–

1708.

2152 L. Adjlout et al. / International Journal of Heat and Mass Transfer 45 (2002) 2141–2152


